In-situ formation and assembly of gold nanoparticles by gum arabic as efficient photothermal agent for killing cancer cells.
نویسندگان
چکیده
Gold nanoparticles (AuNPs) have been established to sufficiently eradicate tumors by means of heat production for photothermal therapy. However, the translation of the AuNPs from bench to the clinic still remains to be solved until realizing high bioclearance after treatment. Herein, we developed a simple strategy for simultaneous formation and assembly of small-size gold nanoparticles (Au-SNPs) to form a novel nanocomposite in the presence of gum arabic (GA) by synchrotron X-ray irradiation in an aqueous solution within 5 min. GA, a porous polysaccharide, can not only provide a confined space in which to produce uniform Au-SNPs (1.6 ± 0.7 nm in diameter), but can also facilitate the formation of Au-SNPs@GA (diameter ≈ 40 nm) after irradiating synchrotron X-rays. Specifically, the Au-SNPs@GA possesses high thermal stability and a strong photothermal effect for killing cancer cells. Importantly, a bioclearance study demonstrated that the Au-SNPs@GA can be gradually excreted by the renal and hepatobiliary system, which might be due to the breakdown and oxidation of GA under irradiating synchrotron X-rays. Thus, the novel gold nanocomposite can be promising photothermal agents for cancer treatment at the therapeutic level, minimizing toxicity concerns regarding long-term accumulation in vivo.
منابع مشابه
Synthesis and Evaluation of Gold Nanoparticles/Nanorods to Use in Plasmonic Photothermal Therapy
Introduction: Photothermal therapy is a method of cancer treatment that plasmonic nanoparticles are used to convert infrared light into local heat. Due to the plasmonic properties of gold nanoparticles, this compound was used as a contrast agent. The aim of this study was to synthesize gold nanoparticles with different conjugations for photothermal therapy. Methods: This research was an experi...
متن کاملThe use of Gold nanorods conjugated with Herceptin in breast cancer treatment by photothermal therapy method in mouse model
Treatment methods for breast cancer are not specific and each one has its own drawbacks. For this reason, scientists are seeking ways in which specifically affect cancer cells. Photothermal therapy is a method that uses near-infrared (NIR) laser energy to create sufficient heat to destroy cancer cells. In this study, the photothermal effect of gold nanorods (GNRs) was investigated for breast ca...
متن کاملThe use of Gold nanorods conjugated with Herceptin in breast cancer treatment by photothermal therapy method in mouse model
Treatment methods for breast cancer are not specific and each one has its own drawbacks. For this reason, scientists are seeking ways in which specifically affect cancer cells. Photothermal therapy is a method that uses near-infrared (NIR) laser energy to create sufficient heat to destroy cancer cells. In this study, the photothermal effect of gold nanorods (GNRs) was investigated for breast ca...
متن کاملGold nanoparticles as cancer theranostic agents
The application of nanotechnology in medicine involves using nanomaterials to develop novel therapeutic and diagnostic modalities. Given the unique physiochemical and optical properties of gold nanoparticle (GNP) such as good biocompatibility, nontoxic nature, surface properties and comparative stability, it has been widely studied in medicine, especially as a cancer theranostic agent. Th...
متن کاملA Facile Strategy to Prepare Dendrimer-stabilized Gold Nanorods with Sub-10-nm Size for Efficient Photothermal Cancer Therapy
Gold (Au) nanoparticles are promising photothermal agents with the potential of clinical translation. However, the safety concerns of Au photothermal agents including the potential toxic compositions such as silver and copper elements in their structures and the relative large size-caused retention and accumulation in the body post-treatment are still questionable. In this article, we successfu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Macromolecular bioscience
دوره 13 10 شماره
صفحات -
تاریخ انتشار 2013